par Taslakian, Perouz
;Aloupis, Greg
;Cardinal, Jean
;Collette, Sébastien
;Demaine, Erik D.
;Demaine, Martin L.;Dulieu, Muriel;Fabila-Monroy, Ruy;Hart, Vi;Hurtado, Ferran
;Langerman, Stefan
;Saumell Mendiola, Maria
;Seara, Carlos
Référence Lecture notes in computer science, 6034, page (456-467)
Publication Publié, 2010-04








Référence Lecture notes in computer science, 6034, page (456-467)
Publication Publié, 2010-04
Article révisé par les pairs
Résumé : | Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their number is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete. © 2010 Springer-Verlag. |