par Haut, Benoît ;Colinet, Pierre
Référence Journal of colloid and interface science, 285, 1, page (296-305)
Publication Publié, 2005
Article révisé par les pairs
Résumé : A theoretical model of the evaporation of a pure liquid layer is developed. We focus on the influence of an inert gaseous component, in addition to vapor, on surface-tension-driven Bénard instabilities. It is assumed that the gas phase is perfectly mixed at some distance from the liquid–gas interface (given composition, pressure, and temperature). If this distance is not much larger than the liquid layer thickness, it is shown that a reduction of the full two-layer problem to a one-layer problem is possible, provided the evaporation rate is not too large. An analytical expression is given for the corresponding dimensionless heat transfer coefficient (a generalized, wavenumber-dependent Biot number) at the evaporating interface. The approach is validated through a comparison with a direct numerical resolution of the full two-layer problem.