Résumé : 'Type III secretion' allows extracellular adherent bacteria to inject bacterial effector proteins into the cytosol of their animal or plant host cells. In the archetypal Yersinia system the secreted proteins are called Yops. Some of them are intracellular effectors, while YopB and YopD have been shown by genetic analyses to be dedicated to the translocation of these effectors. Here, the secretion of Yops by Y.enterocolitica was induced in the presence of liposomes, and some Yops, including YopB and YopD, were found to be inserted into liposomes. The proteoliposomes were fused to a planar lipid membrane to characterize the putative pore-forming properties of the lipid-bound Yops. Electrophysiological experiments revealed the presence of channels with a 105 pS conductance and no ionic selectivity. Channels with those properties were generated by mutants devoid of the effectors and by lcrG mutants, as well as by wild-type bacteria. In contrast, mutants devoid of YopB did not generate channels and mutants devoid of YopD led to current fluctuations that were different from those observed with wild-type bacteria. The observed channel could be responsible for the translocation of Yop effectors.