par Targovnik, H. M.;Frechtel, G D;Mendive, Fernando ;Vono, J;Cochaux, Pascale ;Vassart, Gilbert ;Medeiros-Neto, G A
Référence Thyroid, 8, 4, page (291-297)
Publication Publié, 1998-04
Référence Thyroid, 8, 4, page (291-297)
Publication Publié, 1998-04
Article révisé par les pairs
Résumé : | We have previously reported a Brazilian family with congenital goiter, hypothyroidism, and marked impairment of thyroglobulin (Tg) synthesis. Analysis of the Tg mRNA in the goiter of one of the siblings revealed a cytosine to thymine transition creating a stop codon at position 1510. This point mutation is removed from the majority of Tg mRNA transcripts by the preferential generation in the goiter of a 171 nt deleted Tg mRNA by alternative splicing. The nonsense mutation destroys a TaqI site at this position in the mutant Tg gene. Using polymerase chain reaction (PCR) amplification and TaqI digestion we found that two siblings affected with goiter and hypothyroidism, as well as the father and three siblings with normal thyroid function, are all heterozygous for the nonsense mutation. This implies that an additional mutation must be present in the affected individuals, generating a compound heterozygote genotype. A new polymorphism within the thyroglobulin gene represented by three alleles has been detected. This was documented by the TaqI restriction enzyme and phTgM3 probe hybridization that showed a three allelic polymorphism with fragment sizes of 16.5 kb (allele A), 14.5 kb (allele B) and 11.0 kb (allele C). Segregation analysis of these alleles in the family indicated that the two affected siblings were homozygous for the allele C. In contrast the unaffected father and three other siblings, who carried the nonsense mutation, were heterozygous for alleles B and C. Analysis of the Tg genotypes implies that two additional mutations of the Tg gene must segregate in this family to account for the observed phenotypes. |