par Roberts, David J;Waelbroeck, Magali
Référence Biochemical pharmacology, 68, 5, page (799-806)
Publication Publié, 2004-09
Article révisé par les pairs
Résumé : G protein coupled receptors catalyze the GDP/GTP exchange on G proteins, thereby activating them. The ternary complex model, designed to describe agonist binding in the absence of GTP, is often extended to G protein activation. This is logically unsatisfactory as the ternary complex does not accumulate when G proteins are activated by GTP. Extended models taking into account nucleotide binding exist, but fail to explain catalytic G protein activation. This review puts forward an enzymatic model of G protein activation and compares its predictions with the ternary complex model and with observed receptor phenomenon. This alternative model does not merely provide a new set of formulae but leads to a new philosophical outlook and more readily accommodates experimental observations. The ternary complex model implies that, HRG being responsible for efficient G protein activation, it should be as stable as possible. In contrast, the enzyme model suggests that although a limited stabilization of HRG facilitates GDP release, HRG should not be "too stable" as this might trap the G protein in an inactive state and actually hinder G protein activation. The two models also differ completely in the definition of the receptor "active state": the ternary complex model implies that the active state corresponds to a single active receptor conformation (HRG); in contrast, the catalytic model predicts that the active receptor state is mobile, switching smoothly through various conformations with high and low affinities for agonists (HR, HRG, HRGGDP, HRGGTP, etc.).