par Meek, K;Jeske, D;Slaoui, Moncef;Leo, Oberdan ;Urbain, Jacques ;Capra, Jason Donald
Référence The Journal of experimental medicine, 160, 4, page (1070-1086)
Publication Publié, 1984-10
Référence The Journal of experimental medicine, 160, 4, page (1070-1086)
Publication Publié, 1984-10
Article révisé par les pairs
Résumé : | The primary structure of A/J anti-p-azophenylarsonate (anti-Ars) antibodies expressing the major A-strain cross-reactive idiotype (CRIA) has provided important insights into issues of antibody diversity and the molecular basis of idiotypy in this important model system. Until recently, this idiotype was thought to be rarely, if ever, expressed in BALB/c mice. Indeed, it has been reported that BALB/c mice lack the heavy chain variable segment (VH) gene that is utilized by the entire family of anti-Ars antibodies expressing the A/J CRI. Recently, however, it has been possible to elicit CRIA+, Ars binding antibodies in the BALB/c strain by immunizing first with anti-CRI and then with antigen. Such BALB/c, CRIA+ anti-Ars antibodies can be induced occasionally with antigen alone. VH region amino acid sequences are described for two CRIA+ hybridoma products derived from BALB/c mice. While remarkably similar to each other, their VH segments (1-98) differ from the VH segments of A/J CRIA+, anti-Ars antibodies in over 40 positions. Rather than the usual JH2 gene segment used by most A/J CRIA+ anti-Ars antibodies, one BALB/c CRIA+ hybridoma utilizes a JH1 gene segment, while the other uses a JH4. However, the D segments of both of the BALB/c antibodies are remarkably homologous to the D segments of several A/J CRIA+ antibodies sequenced previously, as are the amino terminal amino acid sequences of their light chains. These data imply that BALB/c mice express the A/J CRIA by producing antibodies with very similar, if not identical, light chain and heavy chain D segments, but in the context of different VH and JH gene segments than their A/J counterparts. The results document that molecules that share serologic specificities can have vastly different primary structures. |