Résumé : As a result of its interaction with a specific receptor, inositol 1,4,5-trisphosphate mobilizes intracellular calcium. The metabolism of inositol 1,4,5-trisphosphate is rather complex: inositol 1,4,5-trisphosphate 3-kinase produces inositol 1,3,4,5-tetrakisphosphate, a putative second messenger. In order to elucidate inositol 1,3,4,5-tetrakisphosphate function, a comparative in situ hybridization study of the distributions of inositol 1,4,5-trisphosphate 3-kinase and receptor mRNAs was performed in the adult rat brain using oligonucleotides derived from their cDNA sequences. The neuronal distributions of the mRNA for the receptor were larger than for the kinase. Highest levels of both mRNAs were found in the cerebellar Purkinje cells, where they were enriched in their neuronal perikarya and to a lesser extent in their dendrites. In addition to the cerebellum, mRNAs were mainly detected in the hippocampal pyramidal cells of the CA1 sector of the Ammon's horn and in the granule cells of the dentate gyrus, and also in a majority of the neurons in the cortical layers II-III and V, especially in the frontal cortex and cingulate cortex; caudate-putamen, accumbens, olfactory tubercle and Calleja islets; claustrum; anterior olfactory nucleus; taenia tecta; piriform cortex; dorsolateral septum; bed nucleus stria terminalis; amygdala; hippocampal CA2-4 sectors and subiculum. The inositol 1,4,5-trisphosphate receptor mRNA but not kinase mRNA was found in a majority of the neurons in the thalamus, especially in the parafascicular nucleus; hypothalamus, especially the medial hypothalamus; substantia nigra pars compacta and ventral tegmental area; superior colliculus; lateral interpeduncular nucleus and central gray. Taking into account the limitation in sensitivity of the technique, both mRNAs were not detected in glial cells and in the olfactory bulb; basal nucleus of Meynert, diagonal band nuclei; medial septal nucleus; substantia innominata; globus pallidus; entopeduncular nucleus; substantia nigra pars reticulata; ventral pallidum; subthalamic nucleus; spinal cord and dorsal root ganglia. In conclusion, cerebellum and hippocampus appear to contain almost similar levels of kinase mRNA. This is in contrast to receptor mRNA levels which were at much higher levels in the cerebellum when compared with the hippocampus. For this reason, we have chosen hippocampal CA1 pyramidal cells and dentate gyrus granule cells for studying inositol 1,4,5-trisphosphate 3-kinase function.