Résumé : The calcium-sensing receptor gene was recently shown to be expressed in rat pancreatic islets and purified islet B-cells. In this study, we investigated the possible role of this receptor in the regulation of insulin release from isolated rat pancreatic islets. Poly-L-arginine (0.2-0.3 microM) and poly-L-lysine (0.03-0.1 microM) increased insulin output evoked by D-glucose (8.3 mM). This positive effect faded out at higher concentrations of the basic peptides. Likewise, the release of insulin evoked by 8.3 mM D-glucose was significantly lower at high (1.0 mM) than low (0.05-0.1 mM) concentrations of neomycin. The insulinotropic action of Ba2+ in Ca2+-deprived islets was potentiated in rats pretreated with pertussis toxin. However, Gd3+ inhibited insulin release evoked by D-glucose in islets prepared from normal rats or animals pretreated with pertussis toxin and incubated in the absence or presence of either theophylline or forskolin. Gd3+ (0.3 mM) failed to affect effluent radioactivity from islets prelabeled with myo-[2-3H]inositol and cyclic AMP net production in islets incubated in the absence or presence of forskolin. Gd3+ decreased, however, 45Ca efflux from prelabeled islets perifused in the absence or presence of extracellular Ca2+. It is speculated that a negative insulinotropic action mediated by the calcium-sensing receptor, and possibly attributable to a fall in cytosolic Ca2+ concentration, may prevent excessive insulin secretion in pathological situations of hypercalcemia.