Article révisé par les pairs
Résumé : Dendritic cells (DC) genetically engineered to express Fas (CD95) ligand (FasL-DC) have been proposed as immunotherapeutic tools to induce tolerance to allografts. However, we and others recently showed that FasL-DC elicit a vigorous inflammatory response involving granulocytes and can promote Th1-type CD4+ and cytotoxic CD8+ T lymphocytes. This prompted us to evaluate the pathology induced by intravenous injection of FasL-DC in mice. We observed that FasL-DC obtained after retroviral gene transfer of bone marrow precursors derived from Fas-deficient C57Bl/6 mice induce massive pulmonary inflammation and pleuritis one day after a single intravenous injection in C57Bl/6 mice. Two months later, all mice presented granulomatous vasculitis of small to medium sized vessels, alveolar haemorrhage and pleuritis. In these lesions, apoptotic bodies were found in large number. Anti-neutrophilic cytoplasmic and anti-myeloperoxidase autoantibodies were not detected. This study documents that intravenous injection of FasL-DC causes severe lung granulomatous vasculitis. This new animal model for vasculitis is inducible, highly reproducible and shares many features with human Wegener granulomatosis. This model may be an appropriate tool to further investigate the pathogenesis of vasculitis and test new therapeutic strategies. Moreover, our findings highlight the potential severe complications of FasL-DC-based immunotherapy.