Résumé : In Rat-1 fibroblasts, v-Src causes a profound remodelling of cortical actin cytoskeleton. This transformation includes membrane ruffling, a hallmark of the leading edge in migrating cells, and results from activation of phosphoinositide 3-kinase (PI 3-kinase), phospholipase C (PLC) and phospholipase D (PLD). We therefore reexamined whether motility is constitutively triggered by v-Src and studied whether this response is controlled by the same signalling pathway. The study was performed using Rat-1/tsLA29 and MDCK/tsLA31 cells, each harbouring a different thermosensitive v-Src kinase, active at 34 degrees C but inactivated at 40 degrees C. In both cell lines, overnight v-Src activation induced transformation and accelerated spontaneous motility by approximately twofold, as evidenced by wound-healing assay and by single-cell track, time-lapse recording in Dunn chambers. Inhibitors of PI 3-kinase, PLC and PLD selectively abrogated acceleration of motility by v-Src. Since mechanisms that co-ordinate spontaneous, as distinct from oriented, cell migration are separable, we further analysed in Dunn chambers chemotactic response of Rat-1/tsLA29 cells to PDGF and of MDCK/tsLA31 cells to EGF. In both cases, v-Src decreased the steady-state level of growth factor receptors at the cell surface twofold, and abrogated movement directionality at comparable level of occupancy as in non-transformed cells. The burst of pinocytosis in response to growth factors was also abolished by v-Src. Altogether, these results indicate that v-Src triggers motility in a PI 3-kinase-, PLC- and PLD-dependent manner, but abrogates directionality by suppressing polarised signalling downstream of growth factor receptors.