Résumé : The Trypanosoma brucei reference strain TREU927/4 exhibits some resistance to lysis by normal human serum (NHS), but this resistance is never complete even after selection. The genome of this strain contains a minimum of eight sequences related to the T. brucei rhodesiense-specific serum resistance-associated gene (SRA), which encodes a truncated variant surface glycoprotein (VSG) conferring full resistance to lysis by NHS. We selected two sequences showing the highest similarity to SRA and also preceded by a region ("cotransposed region") present immediately upstream from SRA in the VSG expression site termed R-ES, where SRA is expressed in T. brucei rhodesiense. Whereas one of these sequences appears to be a pseudogene, the other, which is contained within a cluster of VSG basic copies (BCs), encodes a VSG truncated in the C-terminal domain. In the latter gene, an inserted region encoding surface-exposed loops similar to those of the BoTat 1.20 VSG interrupts the full SRA sequence. Therefore, this gene was termed SRA-BC, for the putative VSG basic copy from which SRA was derived. Neither this gene nor other SRA-like sequences appeared to be responsible for the relative resistance of TREU927/4 to NHS, since (i) transfection of SRA-BC in T. brucei brucei did not confer increased resistance; (ii) SRA transcripts could not be detected in this strain, even when focusing the search on the limited SRA sequence necessary to confer resistance and when using strain-specific SRA probes on RNA from cells selected in the presence of NHS.