Résumé : Transcription of the variant surface glycoprotein (VSG) gene of Trypanosoma brucei occurs in a single of multiple polycistronic expression sites (ESs). Analysis of RNA from proliferative long slender (LS) bloodstream forms demonstrated that initiation of transcription occurs in different ESs, but inefficient RNA processing and elongation is linked to RNA polymerase arrest in all except one unit at a time. The pattern of ES transcripts was analysed during the transformation of dividing LS forms into quiescent short stumpy (SS) forms. The results demonstrated that the mono-allelic control allowing preferential RNA production from a given ES stops during this process. Accordingly, the steady-state ES transcripts, particularly the VSG mRNA, were strongly reduced. However, transcripts from the beginning of different ESs were still synthesized, and in vitro run-on transcription analysis indicated that RNA polymerase was still fully associated with the promoter-proximal half of the 'active' ES. Analysis of transcripts from two central tandem genes confirmed the existence of a residual decreasing transcriptional gradient in the 'active' ES of SS forms. Thus, in these forms the RNA polymerase of the ES is inactivated in situ. This inactivation is accompanied by a strong overall reduction of nuclear DNA transcription. Although cAMP is involved in the LS to SS transformation, no direct effect of cAMP was observed on the VSG ES control.