par Berberof, M;Perez-Morga, David ;Pays, Etienne
Référence Molecular and biochemical parasitology, 113, 1, page (127-138)
Publication Publié, 2001-03
Article révisé par les pairs
Résumé : Trypanosoma brucei gambiense and T. b. rhodesiense are protozoan parasites causing sleeping sickness in humans due to their resistance to lysis by normal human serum (NHS). Based on the observation that the resistance gene of T. b. rhodesiense encodes a truncated form of the variant specific glycoprotein (VSG), we cloned a similar gene in T. b. gambiense using reverse transcription-linked polymerase chain reaction with VSG-specific primers. This gene, termed TgsGP for T. gambiense-specific glycoprotein, was found to be specific to T. b. gambiense. It is located close to a telomere and is transcribed by a pol II RNA polymerase, only at the bloodstream stage of the parasite development. TgsGP encodes a 47-kDa protein consisting of a N-terminal VSG domain presumably provided with a glycosylphosphatidylinositol (GPI) anchor sequence, similar to the pESAG6 subunit of the trypanosomal transferrin receptor. TgsGP is located in the flagellar pocket, and contains the linear N-linked polyacetyllactosamine characteristic of the endocytotic machinery of T. brucei. These observations strongly suggest that TgsGP is a T. b. gambiense specific receptor. Since stable expression of this protein in T. b. brucei did not confer resistance to NHS, TgsGP may either need another factor to achieve this purpose or fulfils another function linked to adaptation of the parasite to man.