Article révisé par les pairs
Résumé : The P2Y(11) receptor is an ATP receptor positively coupled to the cAMP and phosphoinositide pathways. Ssf1 is a Saccharomyces cerevisiae nuclear protein, which plays an important role in mating. The gene encoding the human orthologue of SSF1 is adjacent to the P2Y(11) gene on chromosome 19. During the screening of placenta cDNA libraries, we isolated a chimeric clone resulting from the intergenic splicing between the P2Y(11) and SSF1 genes. The fusion protein was stably expressed in CHO-K1 cells where it generated a cAMP response to ATP qualitatively indistinguishable from that of the P2Y(11) receptor. According to both Western blotting and cAMP response, the expression of the fusion protein in the transfected cells was clearly lower than that of the P2Y(11) receptor. Both P2Y(11) and SSF1 probes detected a 5.6-kb messenger RNA with a similar pattern of intensity in each of 11 human tissues. The ubiquitous presence of chimeric transcripts and their up-regulation during granulocytic differentiation indicate that the transgenic splicing between the P2Y(11) and the SSF1 genes is a common and regulated phenomenon. There are very few examples of intergenic splicing in mammalian cells, and this is the first case involving a G-protein-coupled receptor.