par Demolle, Dominique;Lecomte, Marc;Boeynaems, Jean-Marie
Référence The Journal of biological chemistry, 263, 34, page (18459-18465)
Publication Publié, 1988-12
Référence The Journal of biological chemistry, 263, 34, page (18459-18465)
Publication Publié, 1988-12
Article révisé par les pairs
Résumé : | In bovine aortic endothelial cells, ATP (10-100 microM) and bradykinin (0.1-1.0 microM) enhanced the phosphorylation of two major protein substrates with apparent molecular masses of 95 and 28 kDa. The action of ATP involved P2y purinoceptors. The kinetics were distinct for the two phosphopeptides. The phosphorylation of the 95-kDa protein was rapid (within 30 s) but transient (maintained for only 2 min). This time course agrees with that observed for the increase of the cytosolic Ca2+ level induced by ATP in these cells. Ionophore A23187 (greater than or equal to 100 nM) induced this phosphorylation for a longer period (5-10 min), whereas phorbol 12-myristate 13-acetate (PMA) was completely inactive. The enhancement of the 28-kDa protein phosphorylation was detectable after a 5-min lag and was maintained for at least 20 min. PMA (50 nM) stimulated weakly the phosphorylation of the 28-kDa protein, whereas A23187 (100-300 nM) was even more effective than ATP and bradykinin. The 95-kDa phosphoprotein seems to be related to a 100-kDa substrate of calmodulin-dependent protein kinase III recently identified as elongation factor-2. The 28-kDa protein, which was resolved as three variants in bidimensional gel electrophoresis, appears very similar to a slightly heavier phosphoprotein from thrombin-stimulated human platelets. In addition, bidimensional electrophoresis allowed the detection of at least 10 substrates (from 18 to 46 kDa) whose phosphorylation was enhanced equally well by ATP, bradykinin, and A23187 and only partially by PMA. In conclusion, protein phosphorylation induced by ATP and bradykinin in aortic endothelial cells seems to be catalyzed mostly by Ca2+-dependent kinases, distinct from protein kinase C. |