par Nicolis, Grégoire
;Malek-Mansour, Mohammad-Ali 
Référence Journal of Statistical Physics, 22, 4, page (495-512)
Publication Publié, 1980


Référence Journal of Statistical Physics, 22, 4, page (495-512)
Publication Publié, 1980
Article révisé par les pairs
Résumé : | The multivariate master equation for a reaction-diffusion system is analyzed using a singular perturbation approach. It is shown that in the vicinity of a bifurcation leading to two simultaneously stable steady states, the steady-state probability distribution reduces asymptotically to the exponential of the Landau-Ginzburg functional. On the other hand, for a system displaying quadratic nonlinearities and an absorbing state, critical behavior is ruled out. © 1980 Plenum Publishing Corporation. |