Article révisé par les pairs
Résumé : We investigate pores in fluid membranes by molecular dynamics simulations of an amphiphile-solvent mixture, using a molecular coarse-grained model. The amphiphilic membranes self-assemble into a lamellar stack of amphiphilic bilayers separated by solvent layers. We focus on the particular case of tensionless membranes, in which pores spontaneously appear because of thermal fluctuations. Their spatial distribution is similar to that of a random set of repulsive hard disks. The size and shape distribution of individual pores can be described satisfactorily by a simple mesoscopic model, which accounts only for a pore independent core energy and a line tension penalty at the pore edges. In particular, the pores are not circular: their shapes are fractal and have the same characteristics as those of two-dimensional ring polymers. Finally, we study the size-fluctuation dynamics of the pores, and compare the time evolution of their contour length to a random walk in a linear potential.