Article révisé par les pairs
Résumé : The binary collision approximation (BCA) grounded on molecular dynamics results is used to investigate the influence of the range and stiffness of interatomic potentials on the replacement collision sequence (RCS) length and frequency distributions as well as on the displacement cascade expansion and density. Different screened Coulomb potential functions are used in the Marlowe BCA program with suitably adjusted screening lengths. We show in this paper that for screened Coulomb potentials, the shorter the range, the lower the focusing threshold and the more important the RCS production. The cascade expansion and density is quite sensitive to the potential range at high interaction energies. The overall cascade expansion is found to be governed by the 10% highest-energy recoils. Their energy is above the RCS focusing energy threshold. The cascade density, i.e., the number of transient defects produced per unit volume, is suggested sufficient to interfere significantly with RCS propagation and thus with the spatial distribution of Frenkel pairs. Primary damage production thus involves the combined effect of high-energy collisions and RCS production. A careful choice of the short range potential has thus to be made when simulating displacement cascades. © 2002 The American Physical Society.