Résumé : Malaria is a major public health challenge in low- and middle-income countries with significant socio-economic impacts. While chemotherapy has greatly contributed to malaria control, the widespread emergence of resistance to antimalarial drugs threatens progress towards elimination goals. In parallel, the recent rollout of the RTS,S/AS01 and R21/Matrix-M malaria vaccine-targeting the Plasmodium falciparum circumsporozoite protein (CSP)-offers a new prevention tool but may be influenced by parasite genetic diversity. This study investigated the genetic architecture of Plasmodium falciparum circulating in a community in the Southwest Region of Cameroon. Seventy-two blood samples were analyzed using targeted Oxford Nanopore sequencing of pfcrt, pfmdr1, pfdhfr, pfdhps, pfkelch13 and pfcsp genes. We observed a high prevalence of pfdhfr mutations (98.6% N51I, 98.6% C59R, 97.7% S108N) and pfmdr1 Y184F (76.1%) mutation. Mutations in pfdhps (54.2% S436A, 2.8% A437G, 38.9% A581G) were also observed. No WHO-validated pfkelch13 artemisinin resistance markers were found; however, K189T (63.4%) and R255K (4.2%) variants were detected. Nineteen non-synonymous SNPs were identified in pfcsp, reflecting natural background variations as vaccination status was not known. These findings support the continued use of artemisinin-based combination therapies and underscores the need for sustained molecular surveillance of both antimalarial drug resistance and vaccine-related polymorphisms, to inform malaria control strategies.