par Hashemi, Saïd-Iraj
;Chéron, Guy
;Demolin, Didier
;Cebolla Alvarez, Ana Maria 
Référence Scientific reports, 15, 1, 29150
Publication Publié, 2025-07-28
;Chéron, Guy
;Demolin, Didier
;Cebolla Alvarez, Ana Maria 
Référence Scientific reports, 15, 1, 29150
Publication Publié, 2025-07-28
Article révisé par les pairs
| Résumé : | While the role of brain rhythms in respiratory and speech motor control has been mainly explored during brief utterances, the specific involvement of brain rhythms in the transition of regulating subglottic pressure phases which are concomitant to specific muscle activation during prolonged phonation remains unexplored. This study investigates whether power spectral variations of the electroencephalogram brain rhythms are related specifically to prolonged phonation phases. High-density EEG and surface EMG were recorded in nineteen healthy participants while they repeatedly produced the syllable [pa] without taking a new breath, until reaching respiratory exhaustion. Aerodynamic, acoustic, and electrophysiological signals were analyzed to detect the brain areas involved in different phases of prolonged phonation. Each phase was defined by successive thoracic and abdominal muscle activity maintaining estimated subglottic pressure. The results showed significant changes in power spectrum, with desynchronization and synchronization in delta, theta, low-alpha, and high-alpha bands during transitions among the phases. Brain source analysis estimated that the first phase (P1), associated with vocal initiation and elastic rib cage recoil, involved frontal regions, suggesting a key role in voluntary phonation preparation. Subsequent phases (P2, P3, P4) showed multiband dynamics, engaging motor and premotor cortices, anterior cingulate, sensorimotor regions, thalamus, and cerebellum, indicating progressive adaptation and fine-tuning of respiratory and articulatory muscle control. Additionally, the involvement of temporal and insular regions in delta rhythm suggests a role in maintaining phonetic representation and preventing spontaneous verbal transformations. These findings provide new insights into the mechanisms and brain regions involved in prolonged phonation. These findings pave the way for applications in vocal brain-machine interfaces, clinical biofeedback for respiratory and vocal disorders, and the development of more ecologically valid paradigms in speech neuroscience. |



