par Mertens, Frederik;Ponnet, Thomas;Nagarajan, Balasubramanian;Parimalanathan, Senthil Kumar
;Steelant, Johan;Castagne, Sylvie;Vetrano, Maria Rosaria
Référence Energies, 18, 11, 2732
Publication Publié, 2025-06-01

Référence Energies, 18, 11, 2732
Publication Publié, 2025-06-01
Article révisé par les pairs
Résumé : | This work addresses enhancing flow boiling heat transfer via the use of engineered surfaces possessing specific novel geometries created via femtosecond laser texturing. Surface functionalization can result in improved, more controlled, and denser nucleation as well as controlled surface rewetting, leading to reduced incipient superheats, higher heat transfer coefficients, reduced flow instabilities, and increased critical heat fluxes with respect to a non-modified reference surface. Specifically, this study investigates how bubble dynamics and heat transfer performance are affected by three different surface textures fabricated on 200 µm thick 316L stainless steel foils using a femtosecond (fs) laser. The examined textures consist of inclined (=45°) microgrooves, inclined (=45°) conical microholes, and laser-induced periodic surface structures (LIPSSs). Each textured surface’s degree of heat transfer enhancement is assessed with respect to a plain reference surface in identical operating conditions. The working fluid is PP1, a replacement of 3M™ FC-72 in heat transfer applications. Among the tested surfaces, submicron-scale LIPSSs contribute to the rewetting of the surface but only show a slight improvement when not combined with bigger microscale structures. The inclined grooves result in the most gradual onset, showing almost no incipient overshoot. The inclined conical microholes achieve superior results, improving heat transfer coefficients up to 70% and reducing the incipient temperature up to 13.5 °C over a plain reference surface. |