par Abbasi, Rasha;Schlüter, Felix
;Aguilar Sanchez, Juan Antonio
;Chau, Thien Nhan
;Maris, Ioana Codrina
;Renzi, Giovanni
;Toscano, Simona
; [et al.]
Référence (26 July 2023 through 3 August 2023: Nagoya), 38th International Cosmic Ray Conference, ICRC 2023, Pos proceedings of science (444), 1111
Publication Publié, 2024-03-01






Référence (26 July 2023 through 3 August 2023: Nagoya), 38th International Cosmic Ray Conference, ICRC 2023, Pos proceedings of science (444), 1111
Publication Publié, 2024-03-01
Publication dans des actes
Résumé : | The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube’s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube’s sensitivity to Galactic CCSNe and strategies for operational readiness, including “fire drill” data challenges. We also discuss coordination with SNEWS 2.0. |