Résumé : Abstract Characterizing the early development of the human brain is critical from both fundamental and clinical perspectives. However, existing neuroimaging techniques are either not well suited to infants or have limited spatial or temporal resolution. The advent of optically pumped magnetometers (OPMs) has revolutionized magnetoencephalography (MEG) by enabling wearable and thus more naturalistic recordings while maintaining excellent sensitivity and spatiotemporal resolution. Nevertheless, its adaptation to studying neural activity in infancy poses several challenges. In this work, we present an original close-to-scalp OPM-MEG setup that successfully recorded brain responses to sounds in newborns. We exposed one-month-old infants to continuous streams of tones and observed significant evoked responses, which peaked ~250 ms poststimulus at bilateral auditory cortices. When tones were presented at a steady fixed pace with an oddball tone every fourth tone, significant neural responses were found both at the frequency of the standard tones (3 Hz) and of the oddball tones (0.75 Hz). The latter reflects the ability of the newborn brain to detect auditory change and synchronize to regular auditory patterns. Additional analyses support the added value of triaxial OPMs to increase the number of channels on small heads. Finally, OPM-MEG responses were validated with those obtained from the same participants using an adult-sized cryogenic MEG. This study demonstrates the applicability of OPM-MEG to study early postnatal periods; a crucial step towards future OPM investigations of typical and pathological early brain development.