par Abbasi, Rasha;A Beccara, S;Chau, Thien Nhan
;Maris, Ioana Codrina
;Schlüter, Felix
;Toscano, Simona 
Référence (26 July 2023 through 3 August 2023: Nagoya), 38th International Cosmic Ray Conference, ICRC 2023, Pos proceedings of science (444), 1123
Publication Publié, 2024-03-01




Référence (26 July 2023 through 3 August 2023: Nagoya), 38th International Cosmic Ray Conference, ICRC 2023, Pos proceedings of science (444), 1123
Publication Publié, 2024-03-01
Publication dans des actes
Résumé : | The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCubeGen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2. |