par Carletti, Lorenzo
Référence Journal of differential equations, 419, page (370-417)
Publication Publié, 2025-02-01
Article révisé par les pairs
Résumé : We show existence, uniqueness and positivity for the Green's function of the operator (Δg+α)k in a closed Riemannian manifold (M,g), of dimension n>2k, k∈N, k≥1, with Laplace-Beltrami operator Δg=−divg(∇⋅), and where α>0. We are interested in the case where α is large: We prove pointwise estimates with explicit dependence on α for the Green's function and its derivatives. We highlight a region of exponential decay for the Green's function away from the diagonal, for large α.