Résumé : The cAMP-dependent mitogenic stimulation elicited by thyroid-stimulating hormone (TSH) in primary cultures of canine thyroid epithelial cells is unique as it upregulates the cyclin-dependent kinase (CDK) inhibitor p27kip1 but not D-type cyclins. TSH and cAMP promote the assembly of required cyclin D3-CDK4 complexes and their nuclear import. Here, the nuclear translocation of these complexes strictly correlated in individual cells with the enhanced presence of nuclear p27. p27, like cyclin D3, supported the TSH-stimulated pRb-kinase activity of the CDK4 complex and, as demonstrated using the high-resolution power of the two-dimensional (2D) gel electrophoresis, the phosphorylation of CDK4, presumably by the nuclear CDK-activating kinase. In the presence of TSH, transforming growth factor beta (TGFbeta) did not affect the assembly of cyclin D3-CDK4, but it strongly inhibited the pRb-kinase activity associated with both cyclin D3 and p27, not only by preventing the nuclear import of cyclin D3-CDK4 and its binding to p27, but also by inhibiting CDK4 phosphorylation within residual p27-bound cyclin D3-CDK4 complexes. No alterations of the relative abundance of multiple (un)phosphorylated forms of cyclin D3 and p27 demonstrated by 2D-gel electrophoresis were associated with these processes. This study suggests a crucial positive role of p27 in the TSH-stimulated nuclear import, phosphorylation, and catalytic activity of cyclin D3-bound CDK4. Moreover, it demonstrates a technique to directly assess the in vivo phosphorylation of endogenous CDK4, which might appear as a last regulated step targeted by the antagonistic cell cycle effects of TSH and TGFbeta.