par Benabid, Rabah ;Henneaux, Pierre ;Labeau, Pierre-Etienne
Référence International Journal of System Assurance Engineering and Management, 15, page (4105–4123)
Publication Publié, 2024-01-01
Article révisé par les pairs
Résumé : The occurrence of a Loss Of Offsite Power (LOOP) event can be a major threat to nuclear safety due to the dependence of auxiliary systems on electrical energy. Probabilistic safety assessments of nuclear power plants require, thus, estimates of the frequencies and durations of such LOOP events. These estimates are usually based on past statistical data, which is not always relevant. Model-based approaches are thus needed. This paper proposes an analytical method to estimate the frequency and duration of switchyard-centered LOOP events, which constitute one of the four main categories of LOOP events. The proposed method is mainly based on the identification of active minimal cut sets, considering the behavior of circuit breakers against faults according to their coordination and selectivity. Adapted versions of the Risk Reduction Worth and Fussel–Vesely importance factors are proposed to evaluate the impact of components on the switchyard-centered LOOP event frequency. Furthermore, uncertainty analysis is developed and performed. Various generic plant connection schemes are used for application. Results demonstrate the applicability of the methodology to estimate the frequency and duration of switchyard-centered LOOP events, and to identify optimal ways to reduce the risk by modifying the switchyard configuration.