par Barbanchon, Christophe ;Mouraux, Dominique ;Baudry, Stéphane
Référence Human movement science, 96, 103236
Publication Publié, 2024-08-01
Référence Human movement science, 96, 103236
Publication Publié, 2024-08-01
Article révisé par les pairs
Résumé : | Postural control may encounter acute challenges when individuals are immersed in a virtual reality (VR) environment, making VR a potential pertinent tool for enhancing balance capacity. Nonetheless, the effects of repeated exposure to VR on balance control remain to be fully elucidated. Fifty-five healthy participants stood upright for six bouts of 90 s each in an immersive virtual reality (VR) environment using a head-mounted display (repeated VR exposure). During these bouts, participants experienced simulated forward and backward displacements. Before and after the repeated VR exposure, the center of pressure mean velocity (VELCOP) was measured in response to simulated forward and backward displacement in VR, as well as during quiet upright standing with eyes open (EO) and closed (EC) in the real environment. The results revealed a significant decrease in VELCOP for forward and backward simulated displacements in both antero-posterior and medio-lateral directions (p < 0.01) after compared to before repeated VR exposure. Furthermore, VELCOP significantly decreased when participants stood upright in EC (−5%; p = 0.004), but not EO (+3%; p > 0.05) in the real environment after repeated VR exposure. The Romberg ratio (EC/EO) was reduced in both antero-posterior and medio-lateral directions (p < 0.05) after VR exposure. This study indicates that repeated exposure to VR induces changes in balance control in both virtual and real environments. These changes may be attributed, in part, to a reduction in the weighting of visual inputs in the multisensory integration process occurring during upright standing. Accordingly, these findings highlight VR as a potentially effective tool for balance rehabilitation. Significance statement: This study indicates that repeated exposure to VR induces changes in balance control in both virtual and real environments that can rely, in part, on a reduction in the weighting of visual inputs in the multisensory integration process occurring during upright standing. |