Résumé : Highlights: What are the main findings? Both the model utilizing edema-related features and the model utilizing mass-related features demonstrated promising results in predicting the occurrence of lung metastases, with similar performances. What is the implication of the main finding? The findings suggest that the analysis of radiomic features extracted exclusively from edema can offer valuable insights into the prediction of lung metastases. Introduction: This study aimed to evaluate whether radiomic features extracted solely from the edema of soft tissue sarcomas (STS) could predict the occurrence of lung metastasis in comparison with features extracted solely from the tumoral mass. Materials and Methods: We retrospectively analyzed magnetic resonance imaging (MRI) scans of 32 STSs, including 14 with lung metastasis and 18 without. A segmentation of the tumor mass and edema was assessed for each MRI examination. A total of 107 radiomic features were extracted for each mass segmentation and 107 radiomic features for each edema segmentation. A two-step feature selection process was applied. Two predictive features for the development of lung metastasis were selected from the mass-related features, as well as two predictive features from the edema-related features. Two Random Forest models were created based on these selected features; 100 random subsampling runs were performed. Key performance metrics, including accuracy and area under the ROC curve (AUC), were calculated, and the resulting accuracies were compared. Results: The model based on mass-related features achieved a median accuracy of 0.83 and a median AUC of 0.88, while the model based on edema-related features achieved a median accuracy of 0.75 and a median AUC of 0.79. A statistical analysis comparing the accuracies of the two models revealed no significant difference. Conclusion: Both models showed promise in predicting the occurrence of lung metastasis in soft tissue sarcomas. These findings suggest that radiomic analysis of edema features can provide valuable insights into the prediction of lung metastasis in soft tissue sarcomas.