par Tu, Wei Lin;Vanderstraeten, Laurens
;Schuch, Norbert;Lee, Hyun Yong;Kawashima, Naoki;Chen, Ji Yao
Référence PRX Quantum, 5, 1, 010335
Publication Publié, 2024-01

Référence PRX Quantum, 5, 1, 010335
Publication Publié, 2024-01
Article révisé par les pairs
Résumé : | Diagrammatic summation is a common bottleneck in modern applications of projected entangled-pair states, especially in computing low-energy excitations of a two-dimensional quantum many-body system. To solve this problem, here we extend the generating-function approach for tensor-network diagrammatic summation, a scheme previously proposed in the context of matrix product states. Taking the form of a one-particle excitation, we show that the excited state can be computed efficiently in the generating-function formalism, which can further be used in evaluating the dynamical structure factor of the system. Our benchmark results for the spin-1/2 transverse-field Ising model and Heisenberg model on the square lattice provide a desirable accuracy, showing good agreement with known results. We then study the spin-1/2J1-J2 model on the same lattice and investigate the dynamical properties of the putative gapless spin liquid phase. We conclude with a discussion on generalizations to multiparticle excitations. |