par Prohira, Steven;De Vries, Krijn KdV;Allison, Patrick;Beatty, James;Besson, David;Connolly, Amy;Dasgupta, Paramita
;Deaconu, Cosmin;De Kockere, S.;Frikken, D.;Hast, Carsten;Santiago, Enrique Huesca;Kuo, Chungyun C.Y.;Latif, Uzair;Lukic, Vesna;Meures, Thomas
;Mulrey, Katharine;Nam, Jiwoo;Nozdrina, Alisa;Oberla, Eric;Ralston, John P.;Sbrocco, C.;Stanley, Rose R.S.;Torres, J.;Toscano, Simona
;Van Den Broeck, D.;Van Eijndhoven, Nick;Wissel, Stephanie
Référence Pos proceedings of science, 395, 416
Publication Publié, 2022-03-01



Référence Pos proceedings of science, 395, 416
Publication Publié, 2022-03-01
Article révisé par les pairs
Résumé : | The SLAC T-576 beam test experiment showed the feasibility of the radar detection technique to probe high-energy particle cascades in dense media. Corresponding particle-level simulations indicate that the radar method has very promising sensitivity to probe the >PeV cosmic neutrino flux. As such, it is crucial to demonstrate the in-situ feasibility of the radar echo method, which is the main goal of the current RET-CR experiment. Although the final goal of the Radar Echo Telescope is to detect cosmic neutrinos, we seek a proof of principle using cosmic-ray air showers penetrating the (high-altitude) Antarctic ice sheet. When an UHECR particle cascade propagates into a high-elevation ice sheet, it produces a dense in-ice cascade of charged particles which can reflect incoming radio waves. Using a surface cosmic-ray detector, the energy and direction of the UHECR can be reconstructed, and as such this constitutes a nearly ideal in-situ test beam to provide the proof of principle for the radar echo technique. RET-CR will consist of a transmitter array, receiver antennas and a surface scintillator plate array. Here we present the simulation efforts for RET-CR performed to optimise the surface array layout and triggering system, which affords an estimate of the expected event rate. |