par Nunes, Aline Raquel Vieira;Gabriel, Sinara S.B.;Araújo, Luana L.S.;Rodrigues, Taissa Zangerolami Lopes;Malet, Loïc ;Dille, Jean ;de Almeida, Luiz Henrique
Référence Metals, 13, 11, 1889
Publication Publié, 2023-11
Référence Metals, 13, 11, 1889
Publication Publié, 2023-11
Article révisé par les pairs
Résumé : | A new generation of titanium alloys with non-toxic, non-allergenic elements and lower Young’s modulus (YM) have been developed, presenting modulus values close to that of bone. In titanium alloys, the value of the Young’s modulus is strongly dependent on the chemical composition. Young’s modulus also depends on the present phases and on the crystallographic texture related to the thermomechanical processing. A lower YM is normally attributed to the formation of the α″ phase into the β matrix, but there is no consensus for this assumption. In the present work, four alloys were designed and melted, based on the Ti-Nb-Mo-Zr system and heat-treated to favor the formation of the β phase. The alloys were produced by arc melting under argon atmosphere and heat-treated at 1000 °C for 24 h under high vacuum, being subsequently quenched in water to room temperature. Alloys were then characterized by optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Young’s modulus was determined by the impulse excitation technique and Vickers microhardness. The purpose of the study was to define an optimal chemical composition for the further production on a semi-industrial scale of a new Ti-Nb-Mo-Zr alloy for orthopedic implant manufacturing. The results showed that all of the four studied alloys are potential candidates for biomedical applications. Among them, the Ti-24Nb-4Mo-6Zr alloy has the lowest Young’s modulus and the highest microhardness. So, this alloy presents the highest HV/YM ratio, which is a key indicator in order to evaluate the mechanical performance of metallic biomaterials for orthopedic implants. |