Résumé : Optimizing root system architecture is a strategy for coping with soil fertility, such as low nitrogen input. An ample number of Arabidopsis thaliana natural accessions have set the foundation for studies on mechanisms that regulate root morphology. This report compares the Columbia-0 (Col-0) reference and Pyla-1 (Pyl-1) from a coastal zone in France, known for having the tallest sand dune in Europe. Seedlings were grown on vertical agar plates with different nitrate concentrations. The lateral root outgrowth of Col-0 was stimulated under mild depletion and repressed under nitrate enrichment. The Pyl-1 produced a long primary root and any or very few visible lateral roots across the nitrate supplies. This could reflect an adaptation to sandy soil conditions, where the primary root grows downwards to the lower strata to take up water and mobile soil resources without elongating the lateral roots. Microscopic observations revealed similar densities of lateral root primordia in both accessions. The Pyl-1 maintained the ability to initiate lateral root primordia. However, the post-initiation events seemed to be critical in modulating the lateral-root-less phenotype. In Pyl-1, the emergence of primordia through the primary root tissues was slowed, and newly formed lateral roots stayed stunted. In brief, Pyl-1 is a fascinating genotype for studying the nutritional influences on lateral root development.