par Zolfaghari, Shiva;Soltaninejad, Ali;Okoro, Oseweuba ;Shavandi, Armin ;Denayer, Joeri F.M.;Sadeghi, Morteza;Karimi, Keikhosro
Référence International journal of biological macromolecules, page (129140)
Publication Publié, 2024-01-01
Référence International journal of biological macromolecules, page (129140)
Publication Publié, 2024-01-01
Article révisé par les pairs
Résumé : | Plastic wastes accumulated due to food packaging pose environmental threats. This study proposes biopolymeric films containing lignins extracted from potato crop residues (PCR) through organosolv treatment as a green alternative to non-degradable food packaging. The isolation process yielded 43.9 wt% lignins with a recovery rate of 73.5 wt% achieved under optimum conditions at 180 °C with 50 % v/v ethanol. The extracted lignins were then incorporated into a starch matrix to create biocomposite films. ATR-FTIR analysis confirmed interactions between the starch matrix and extracted lignins, and XRD analysis showed the amorphous structure of lignins, reducing film crystallinity. The addition of 1 wt% of extracted lignins resulted in a 87 % reduction in oxygen permeability, a 25 % increase in the thermal stability of the film, and a 78 % enhancement in antioxidant. Furthermore, introducing 3 wt% lignins led to the lowest water vapor transmission rate, measuring 9.3 × 10−7 kg/s·m2. Morphological studies of the films demonstrated a homogeneous and continuous structure on both the surface and cross-sectional areas when the lignins content was below 7 wt%. These findings highlight the potential of using organosolv lignins derived from potato crop residues as a promising additive for developing eco-friendly films designed for sustainable food packaging. |