par Tumasyan, A.;Clerbaux, Barbara
;De Lentdecker, Gilles
;Favart, Laurent
;Hohov, Dmytro
;Jaramillo Gallego, Johny
;Lee, Kyeongpil
;Mahdavikhorrami, Mostafa
;Makarenko, Inna
;Malara, Andrea
;Paredes Saenz, Santiago
;Pétré, Laurent
;Postiau, Nicolas
;Starling, Elizabeth Rose
;Thomas, Laurent
;Vanden Bemden, Max
;Vander Velde, Catherine
;Vanlaer, Pascal
; [et al.]
Référence Physical Review D, 108, 032008
Publication Publié, 2023-01-01

















Référence Physical Review D, 108, 032008
Publication Publié, 2023-01-01
Article révisé par les pairs
Résumé : | A data sample containing top quark pairs ( t t ¯ ) produced in association with a Lorentz-boosted Z or Higgs boson is used to search for signs of new physics using effective field theory. The data correspond to an integrated luminosity of 138 fb - 1 of proton-proton collisions produced at a center-of-mass energy of 13 TeV at the LHC and collected by the CMS experiment. Selected events contain a single lepton and hadronic jets, including two identified with the decay of bottom quarks, plus an additional large-radius jet with high transverse momentum identified as a Z or Higgs boson decaying to a bottom quark pair. Machine learning techniques are employed to discriminate between t t ¯ Z or t t ¯ H events and events from background processes, which are dominated by t t ¯ + jets production. No indications of new physics are observed. The signal strengths of boosted t t ¯ Z and t t ¯ H production are measured, and upper limits are placed on the t t ¯ Z and t t ¯ H differential cross sections as functions of the Z or Higgs boson transverse momentum. The effects of new physics are probed using a framework in which the standard model is considered to be the low-energy effective field theory of a higher energy scale theory. Eight possible dimension-six operators are added to the standard model Lagrangian, and their corresponding coefficients are constrained via fits to the data. |