par Karapehlivan, Sema Seren;Danisik, Mehmet Necati;Akdag, Zekiye;Yildiz, Elif Nur;Okoro, Oseweuba ;Nie, Lei ;Shavandi, Armin ;Ulag, Songul;Sahin, Ali;Dumludag, Fatih;Gunduz, Oguzhan
Référence Macromolecular materials and engineering
Publication Publié, 2023-12-01
Référence Macromolecular materials and engineering
Publication Publié, 2023-12-01
Article révisé par les pairs
Résumé : | Abstract This study is focused on fabricating tissue‐engineered electrospun nanofibers that contain polycaprolactone (PCL), graphene oxide (GO), and collagen (COL) to get an alternative treatment for cardiac injuries. GO (1.5 wt%) is used to support the contraction‐elongation of cardiomyocytes by improving electrical stimulation. The COL (1, 3, and 5 wt%) is the main component of the myocardial extracellular matrix have led to their frequent use in cardiac tissue engineering (CTE). The scanning electron microscope (SEM) images show the homogeneous and bead‐free morphologies of the nanofibers. Adding a high amount (3% and 5%) of COL decreases the tensile strength value of 17% PCL/1.5% GO nanofiber. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide (MTT) assay demonstrates that the COL addition increases cell viability compared to that in 17% PCL/1.5% GO nanofibers on the third day. The response of the nanofibers to alternating current (AC) signal is studied between the frequencies 40 and 10 5 Hz. The direct current (DC) conductivity values of the films are determined to be between 1.10 −10 and 6.10 −10 S m −1 at 25 °C. The AC conductivity values show frequency‐dependent behavior. Among the PCL/GO‐based electrospun nanofibers, 17% PCL/1.5% GO/5% COL nanofiber shows greater DC and AC conductivity than 17% PCL/1.5% GO nanofiber. |