par Tunon De Lara Ramos, Matéo ;Amez-Droz, Loïc ;Chah, Karima;Lambert, Pierre ;Collette, Christophe ;Caucheteur, Christophe
Référence Optics express, 31, 18, page (29730-29743)
Publication Publié, 2023-08-01
Référence Optics express, 31, 18, page (29730-29743)
Publication Publié, 2023-08-01
Article révisé par les pairs
Résumé : | The advent of near-infrared femtosecond pulse laser has enabled the highly-resolved manufacturing of micro/nano structures in various materials including glass. In this paper, we make use of an automated femtosecond laser system, so-called Femtoprint, to design a monolithic self-instrumented mechanism that we use for in-built strain sensing. To that aim, a flexible structure is designed and produced from a silica planar substrate. It has a flexural joint in which an optical waveguide and a Bragg grating have been directly inscribed using femtosecond pulse laser. The latter provides a non-destructive and non-intrusive measurement tool. The axial strain sensitivity of the in-built Bragg grating has been experimentally determined to be 1.22 pm/$mu$ ϵ, while its temperature sensitivity is 10.51 pm/AND#x00B0;C. The demonstration of such instrumented glass flexible mechanisms paves the way towards a new class of highly integrated sensors suitable for applications at the microscale or in harsh environments. |