par Tumasyan, A.;Beghin, Diego
;Bilin, Bugra
;Clerbaux, Barbara
;De Lentdecker, Gilles
;Favart, Laurent
;Kalsi, Amandeep Kaur
;Lee, Kyeongpil
;Mahdavikhorrami, Mostafa
;Makarenko, Inna
;Malara, Andrea
;Moureaux, Louis
;Pétré, Laurent
;Popov, Andrey
;Postiau, Nicolas
;Starling, Elizabeth Rose
;Thomas, Laurent
;Vanden Bemden, Max
;Vander Velde, Catherine
;Vanlaer, Pascal
; [et al.]
Référence The journal of high energy physics (Online), 2022, 5, 5
Publication Publié, 2022-05-01



















Référence The journal of high energy physics (Online), 2022, 5, 5
Publication Publié, 2022-05-01
Article révisé par les pairs
Résumé : | A search for new heavy resonances decaying to a pair of Higgs bosons (HH) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC in 2016–2018, corresponding to an integrated luminosity of 138 fb−1. Resonances with a mass between 0.8 and 4.5 TeV are considered using events in which one Higgs boson decays into a bottom quark pair and the other into final states with either one or two charged leptons. Specifically, the single-lepton decay channel HH→ b b ¯ WW∗→ b b ¯ ℓvq q ¯ ′ and the dilepton decay channels HH→ b b ¯ WW∗→ b b ¯ ℓvℓv and HH→ b b ¯ ττ→ b b ¯ ℓvvℓvv are examined, where ℓ in the final state corresponds to an electron or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the H → b b ¯ jet mass and HH invariant mass distributions. No significant excess above the standard model expectation is observed in data. Model-independent exclusion limits are placed on the product of the cross section and branching fraction for narrow spin-0 and spin-2 massive bosons decaying to HH. The results are also interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. The results provide the most stringent limits to date for X → HH signatures with final-state leptons and at some masses provide the most sensitive limits of all X → HH searches. [Figure not available: see fulltext.] |