par Aerts, Antoine ;Jolly, Spencer W. ;Kockaert, Pascal ;Gorza, Simon-Pierre ;Vander Auwera, Jean ;Vaeck, Nathalie
Référence The Journal of Chemical Physics, 159, 8, page (084303)
Publication Publié, 2023-08-01
Référence The Journal of Chemical Physics, 159, 8, page (084303)
Publication Publié, 2023-08-01
Article révisé par les pairs
Résumé : | A pulse-shaping technique in the mid-infrared spectral range based on pulses with a super-Gaussian temporal profile is considered for laser control. We show a realistic and efficient path to the population of a dark rovibrational state in acetylene (C2H2). The laser-induced dynamics in C2H2 are simulated using fully experimental structural parameters. Indeed, the rotation–vibration energy structure, including anharmonicities, is defined by the global spectroscopic Hamiltonian for the ground electronic state of C2H2 built from the extensive high-resolution spectroscopy studies on the molecule, transition dipole moments from intensities, and the effects of the (inelastic) collisions that are parameterized from line broadenings using the relaxation matrix [A. Aerts, J. Vander Auwera, and N. Vaeck, J. Chem. Phys. 154, 144308 (2021)]. The approach, based on an effective Hamiltonian, outperforms today's ab initio computations both in terms of accuracy and computational cost for this class of molecules. With such accuracy, the Hamiltonian permits studying the inner mechanism of theoretical pulse shaping [A. Aerts et al., J. Chem. Phys. 156, 084302 (2022)] for laser quantum control. Here, the generated control pulse presents a number of interferences that take advantage of the control mechanism to populate the dark state. An experimental setup is proposed for in-laboratory investigation. |