par Retout, Maurice ;Gosselin, Bryan ;Adrovic, Amina;Blond, Pascale ;Jabin, Ivan ;Bruylants, Gilles
Référence Nanoscale, 15, page (11981-11989)
Publication Publié, 2023-06-22
Référence Nanoscale, 15, page (11981-11989)
Publication Publié, 2023-06-22
Article révisé par les pairs
Résumé : | Noble metal anisotropic nanostructures, such as silver nanoplates (AgNPls), are interesting because they possess enhanced plasmonic properties compared to their spherical counterparts: increased extinction coefficient and tunable maximum of absorption wavelength. However, their use for biosensing application is limited as these structures are intrinsically unstable and, to maintain the anisotropic structure, a coating protecting the metallic surface is required. In this work, we report on the capacity of a thin but robust coating based on calixarene-diazonium salts to maintain the structure anisotropy of silver nanoplates in conditions in which traditionally used coatings fail. We synthesized AgNPls of various sizes and coated them with two different calixarenes, differing by the functional groups attached to their small rim. After characterization of the efficiency of the ligand exchange process between the initial citrate anions and the calixarenes, the chemical and colloidal stabilities of the resulting calixarene-coated AgNPls were compared to citrate-capped AgNPls. A radical improvement of the lifetime of the material from 1 day for AgNPls coated with citrate to more than 900 days for calixarene-coated AgNPls, as well as the stability in acidic conditions, phosphate saline buffer (PBS) or biofluid, were observed. Benefiting from this exceptional robustness, calixarene-coated AgNPls were exploited to design dipstick assays. Rabbit immunoglobulin G (IgG) detection was developed first as proof-of-concept. The optimal system was then used for the detection of Anti-SARS-CoV-2 IgG. In both cases, a picomolar limit of detection (LOD) was achieved as well as the detection in 100% of pooled human plasma. This sensitivity competes with that of ELISA and is better than the one previously obtained with gold or even silver nanospheres for the same target and in similar conditions. Finally, the wide range of colors provided by the AgNPls allowed the design of a multicolor multiplex assay for the simultaneous detection of multiple analytes. |