Résumé : Indole-3-acetic acid (IAA) represents a crucial phytohormone regulating specific tropic responses in plants and functions as a chemical signal between plant hosts and their symbionts. The Actinobacteria strain of AW22 with high IAA production ability was isolated in Algeria for the first time and was characterized as Streptomyces rubrogriseus through chemotaxonomic analysis and 16 S rDNA sequence alignment. The suitable medium for a maximum IAA yield was engineered in vitro and in silico using machine learning-assisted modeling. The primary low-cost feedstocks comprised various concentrations of spent coffee grounds (SCGs) and carob bean grounds (CBGs) extracts. Further, we combined the Box-Behnken design from response surface methodology (BBD-RSM) with artificial neural networks (ANNs) coupled with the genetic algorithm (GA). The critical process parameters screened via Plackett-Burman design (PBD) served as BBD and ANN-GA inputs, with IAA yield as the output variable. Analysis of the putative IAA using thin-layer chromatography (TLC) and (HPLC) revealed Rf values equal to 0.69 and a retention time of 3.711 min, equivalent to the authentic IAA. AW 22 achieved a maximum IAA yield of 188.290 ± 0.38 μg/mL using the process parameters generated by the ANN-GA model, consisting of L-Trp, 0.6%; SCG, 30%; T°, 25.8 °C; and pH 9, after eight days of incubation. An R2 of 99.98%, adding to an MSE of 1.86 × 10−5 at 129 epochs, postulated higher reliability of ANN-GA-approach in predicting responses, compared with BBD-RSM modeling exhibiting an R2 of 76.28%. The validation experiments resulted in a 4.55-fold and 4.46-fold increase in IAA secretion, corresponding to ANN-GA and BBD-RSM models, respectively, confirming the validity of both models.