Résumé : In this study, medical hydrogels (TGs) were fabricated based on thiolate-modified chitosan (TCS) and methacrylate gelatin (GelMA) using the Thiol-Michael addition reaction. The hydrogels were formed via the Michael reaction between TCS and GelMA and determined to have an equilibrium swelling rate of more than 1100% while simultaneously providing a moist environment for the wound, and limiting crust formation. The porosity of the prepared hydrogel was also shown to have a positive correlation with the concentration of the thiolated chitosan in the formulation. A positive correlation between hydrogel strain and stress properties and increasing concentrations of thiolated chitosan was also observed. The cytocompatibility of the prepared hydrogels was also tested and confirmed using CCK-8 assay after 5 days of culture, and the best antimicrobial properties were observed with the hydrogel containing TCS and GelMA in the mass ratio of 1:2. The present study was, therefore, able to highlight the potential of a simple and low-cost approach to developing cytocompatible hydrogels with antibacterial properties and tunable mechanical properties based on the well-studied GelMA. This study implies that the produced hydrogels can have future applications in fabricating skin wound healing dressings.