Résumé : To develop an electrophysiological marker of proprioceptive spino-cortical tracts integrity based on corticokinematic coherence (CKC) in young children with unilateral cerebral palsy (UCP), in whom behavioral measures are not applicable.Objective: To develop an electrophysiological marker of proprioceptive spino-cortical tracts integrity based on corticokinematic coherence (CKC) in young children with unilateral cerebral palsy (UCP), in whom behavioral measures are not applicable. Methods: Electroencephalography (EEG) signals from 12 children with UCP aged 19 to 57 months were recorded using 128-channel EEG caps while their fingers were moved at 2 Hz by an experimenter, in separate sessions for the affected and non-affected hands. The coherence between movement kinematics and EEG signals (i.e., CKC) was computed at the sensor and source (using a realistic head model) levels. Peaks of CKC obtained for the affected and non-affected hands were compared for location and strength. The relation between CKC strength on the lesion-side, the lesion-type (cortico-subcortical vs. subcortical) and the level of manual ability were studied with 2-way repeated-measures ANOVA. Results: At the individual level, a significant CKC peak at the central area contralateral to the moved hand was found in all young children with their non-affected hand and in 8 out of 12 children with their affected hand. At the group level, CKC to the affected hand movements was weaker than CKC to the non-affected hand movements. This difference was influenced by the type of lesion, the effect being predominant in the subgroup (n = 5) with cortico-subcortical lesions. Conclusion: CKC is measurable with EEG in young children with UCP and provides electrophysiological evidence for altered proprioceptive spino-cortical tracts on the lesioned brain hemisphere, particularly in children with cortico-subcortical lesions.