par Akitaya, Hugo Alves;Ballinger, Brad;Damian, Mirela;Demaine, Erik D. ;Demaine, Martin L.;Flatland, Robin R.;Kostitsyna, Irina ;Ku, Jason J.S.;Langerman, Stefan ;O'Rourke, Joseph ;Uehara, Ryuhei
Référence Lecture notes in computer science, 13034 LNCS, page (122-135)
Publication Publié, 2021-02-01
Référence Lecture notes in computer science, 13034 LNCS, page (122-135)
Publication Publié, 2021-02-01
Article révisé par les pairs
Résumé : | We present nonoverlapping general unfoldings of two infinite families of nonconvex polyhedra, or more specifically, zero-volume polyhedra formed by double-covering an n-pointed star polygon whose triangular points have base angle α. Specifically, we construct general unfoldings when n∈ { 3, 4, 5, 6, 8, 9, 10, 12 } (no matter the value of α ), and we construct general unfoldings when α< 60∘(1 + 1 / n) (i.e., when the points are shorter than equilateral, no matter the value of n, or slightly larger than equilateral, especially when n is small). Whether all doubly covered star polygons, or more broadly arbitrary nonconvex polyhedra, have general unfoldings remains open. |