Résumé : The continuous urbanisation in most Low-to-Middle-Income-Country (LMIC) cities is accompanied by rapid socio-economic changes in urban and peri-urban areas. Urban transformation processes, such as gentrification as well as the increase in poor urban neighbourhoods (e.g., slums) produce new urban patterns. The intersection of very rapid socio-economic and demographic dynamics are often insufficiently understood, and relevant data for understanding them are commonly unavailable, dated, or too coarse (resolution). Traditional survey-based methods (e.g., census) are carried out at low temporal granularity and do not allow for frequent updates of large urban areas. Researchers and policymakers typically work with very dated data, which do not reflect on-the-ground realities and data aggregation hide socio-economic disparities. Therefore, the potential of Earth Observations (EO) needs to be unlocked. EO data have the ability to provide information at detailed spatial and temporal scales so as to support monitoring transformations. In this paper, we showcase how recent innovations in EO and Artificial Intelligence (AI) can provide relevant, rapid information about socio-economic conditions, and in particular on poor urban neighbourhoods, when large scale and/or multi-temporal data are required, e.g., to support Sustainable Development Goals (SDG) monitoring. We provide solutions to key challenges, including the provision of multi-scale data, the reduction in data costs, and the mapping of socio-economic conditions. These innovations fill data gaps for the production of statistical information, addressing the problems of access to field-based data under COVID-19.