par Drescher, Matthew
Président du jury Cardinal, Jean
Promoteur Fiorini, Samuel
Publication Non publié, 2021-11-15
Président du jury Cardinal, Jean
Promoteur Fiorini, Samuel
Publication Non publié, 2021-11-15
Thèse de doctorat
Résumé : | We give a 2-approximation algorithm for Cluster Vertex Deletion. This tight result matches the hardness lower bound. We obtain a new deterministic 7/3-approximation algorithm for Feedback Vertex Set in Tournaments. This result is based on the LP given by just one round of Sherali-Adams. We find a new, simpler deterministic (2 + epsilon)-approximation algorithm for Split Vertex Deletion. We give a 2-approximation algorithm for Claw-Free Vertex Deletion in triangle-free graphs. In the case of general graphs we prove that it is UGC-hard to obtain an approximation ratio lower than 3. |