par Balachander, Mrudula ;Guha, Shibashis ;Raskin, Jean-François
Référence Leibniz international proceedings in informatics, 203
Publication Publié, 2021-08-01
Référence Leibniz international proceedings in informatics, 203
Publication Publié, 2021-08-01
Article révisé par les pairs
Résumé : | Two-player mean-payoff Stackelberg games are nonzero-sum infinite duration games played on a bi-weighted graph by Leader (Player 0) and Follower (Player 1). Such games are played sequentially: first, Leader announces her strategy, second, Follower chooses his best-response. If we cannot impose which best-response is chosen by Follower, we say that Follower, though strategic, is adversarial towards Leader. The maximal value that Leader can get in this nonzero-sum game is called the adversarial Stackelberg value (ASV) of the game. We study the robustness of strategies for Leader in these games against two types of deviations: (i) Modeling imprecision - the weights on the edges of the game arena may not be exactly correct, they may be delta-away from the right one. (ii) Sub-optimal response - Follower may play epsilon-optimal best-responses instead of perfect best-responses. First, we show that if the game is zero-sum then robustness is guaranteed while in the nonzero-sum case, optimal strategies for ASV are fragile. Second, we provide a solution concept to obtain strategies for Leader that are robust to both modeling imprecision, and as well as to the epsilon-optimal responses of Follower, and study several properties and algorithmic problems related to this solution concept. |