Résumé : We assessed an in-vitro model of hyperfibrinolysis using rotational thromboelastometry (ROTEM) by the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) on whole blood obtained from children undergoing cardiac surgery. We assessed the relevance of this model by repeating the tests in the same population after tranexamic acid (TXA) infusion. In addition, we determined the sensitivity and specificity of ROTEM parameters to detect the different degrees of fibrinolysis. Blood samples obtained from 20 children were analyzed at two predefined timepoints: after induction of anesthesia, before TXA (baseline), and at the end of surgery during TXA infusion (end surgery). At baseline, an extrinsic activation with tissue factor (EXTEM) test was performed without and with increasing concentration of t-PA (102, 255, 512, 1024, 1535, and 2539unitst-PA/ml). At the end of surgery, a second EXTEM test was performed without and with two different t-PA concentrations (1535 and 2539unitst-PA/ml). At baseline, increasing t-PA concentrations in the EXTEM test induced a gradual increase of hyperfibrinolysis characterized by a reduction in clot firmness and stability parameters. In the presence of TXA, t-PA-induced hyperfibrinolysis was completely abolished. Lysis-onset time (LOT) and degree of fibrinolysis measured at 30min (LI30) best assessed the degree of fibrinolysis. This in-vitro model of t-PA-induced hyperfibrinolysis using the EXTEM test of ROTEM may represent a promising tool to assess hyperfibrinolysis in the pediatric population. In addition, we observed that LOT and LI30 should be considered as the best parameters to detect different degrees of fibrinolysis.