Résumé : In the field of protein research in general and the pharmaceutical industry in particular, it is now necessary to perform measurements of the secondary structure of proteins on many samples simultaneously, for instance to screen for molecules that stabilize proteins or to evaluate the action of multiple environmental conditions. In this context, we have proposed a new approach to evaluate the secondary structure of proteins on a very large scale (approximately 2000 to 4000 samples / cm2), by combining infrared imaging and 2D printing of protein microarrays. In view of the large amount of data, in a first step, methods for automating the extraction of spectra of interest from microarray infrared images and for automating the processing of the spectra were developed. Since the estimation of the secondary structure from infrared spectra is based on the construction of prediction models by chemometric methods, a relevant set of proteins for calibration was mandatory. A protein bank consisting of 92 commercially available proteins, the structure of which was well characterized by X-ray crystallography, was established for this purpose. After the development of predictive models for secondary structure determination and the validation of the protein microarray approach, we tried to optimize the models to improve the secondary structure prediction by different approaches as secondary structure definition, partial deuteration or subtraction of side chain contribution to the spectra. On the other hand, dealing with non-native structures not present in the reference protein library was a challenge. We took the opportunity to analyze the structural modifications of a subset of our protein library subjected to moderate denaturation conditions. Multivariate curve resolution-alternating least squares (MCR-ALS) was used to model a new spectral component appearing in the protein set subjected to denaturing conditions, which could represent a potential spectroscopic marker of aggregation and could allow a semi-quantitative evaluation of the aggregation. While the assessment of secondary structure was well established in the first part of this work, tertiary structure and stability are also critical. Hydrogen / deuterium exchange (HDX) is a potential approach for studying the structure and dynamics of proteins. In the last part of this work, we built a device which allowed to follow the HDX exchange kinetics simultaneously on the entire microarray. In conclusion, protein microarray FTIR imaging opens the door to high throughput analysis of protein secondary structure without any labelling and would allow better understanding of three-dimensional structure and dynamics of proteins through recording HDX curves.
Dans le domaine de la recherche sur les protéines et de l'industrie pharmaceutique, il s’avère désormais nécessaire d'effectuer des mesures de la structure secondaire des protéines sur de nombreux échantillons simultanément, de cribler des molécules qui stabilisent les protéines, ou d'évaluer l'action de multiples conditions environnementales. Dans ce contexte, nous avons proposé une nouvelle approche pour évaluer la structure secondaire des protéines à très grande échelle (environ 2 000 à 4 000 échantillons / cm2), en associant l'imagerie infrarouge et l'impression 2D de damiers de protéines. Dans un premier temps, des méthodes d'automatisation de l'extraction des spectres d'intérêt à partir des images infrarouges des damiers et d'automatisation des spectres ont été développées. L'estimation de la structure secondaire à partir des spectres infrarouges étant basée sur la construction de modèles de prédiction à partir de méthodes chimiométriques, un ensemble pertinent de protéines pour l'étape de calibration était obligatoire. Une banque de protéines constituée de 92 protéines disponibles dans le commerce, dont la structure était bien caractérisée par cristallographie aux rayons X, a été constituée dans ce but. Après élaboration des modèles prédictifs de la structure secondaire et la validation de l'approche des damiers de protéines, nous avons tenté d'optimiser les modèles pour améliorer les prédictions de structure secondaire par différentes approches. D'autre part, traiter des protéines présentant une structure jamais rencontrée dans les structures natives de notre bibliothèque de protéines de référence constituait un défi. Nous avons saisi l'opportunité d'analyser les modifications structurales d'un sous-ensemble de notre bibliothèque de protéines, caractérisé par un contenu structurel secondaire très différent en le soumettant à des conditions de dénaturation modérées La méthode de résolution de courbes multivariées des moindres carrés alternés (MCR-ALS) a été utilisée pour modéliser une nouvelle composante spectrale apparaissant dans l'ensemble protéique soumis à des conditions dénaturantes, et a permis de révéler un marqueur spectroscopique potentiel d'agrégation protéique permettant une évaluation semi-quantitative de son contenu. Alors que l’évaluation de la structure secondaire a été bien établie dans la première partie de ce travail, la structure tertiaire et la stabilité sont également critiques. L'échange hydrogène / deutérium (HDX) est une approche potentielle pour l’étude de la structure et de la dynamique des protéines. Dans la dernière partie de ce travail, nous avons construit un dispositif qui a permis de suivre la cinétique d’échange HDX simultanément sur l'ensemble d’un damier. En conclusion, l'imagerie FTIR de damiers de protéines ouvre la porte à une analyse à haut débit de la structure secondaire des protéines et permettrait de mieux comprendre la structure et la dynamique tridimensionnelles grâce à l'enregistrement des courbes HDX.