par Sourie, Aurélien ;Chamel, Nicolas
Référence Monthly notices of the Royal Astronomical Society, 503, 1, page (1407-1417)
Publication Publié, 2021-03-05
Article révisé par les pairs
Résumé : Our recent Newtonian treatment of the smooth-averaged mutual-friction force acting on the neutron superfluid and locally induced by the pinning of quantized neutron vortices to proton fluxoids in the outer core of superfluid neutron stars is here adapted to the general-relativistic framework. We show how the local non-relativistic motion of individual vortices can be matched to the global dynamics of the star using the fully 4D covariant Newtonian formalism of Carter & Chamel. We derive all the necessary dynamical equations for carrying out realistic simulations of superfluid rotating neutron stars in full general relativity, as required for the interpretation of pulsar frequency glitches. The role of vortex pinning on the global dynamics appears to be non-trivial.